

Principles of Computer Security

Dr George Danezis

(g.danezis@ucl.ac.uk)

Why SecAppDev?

• Learning security on the job is necessary. However,

• Foundations:
– Principles. (Today)
– Access control.

• Advances:
– Privacy-friendly computations.
– Selective disclosure credentials.
– On-line currencies.

What makes computer security a distinct
subject?

“Properties of a computer system must be
maintained despite a resourced strategic
adversary”

Compare with:
– Safety

– Robustness

– Program correctness

What properties?

• Key concept: “Security Policy”
A high level description of the principals,
assets and properties that must hold in the system.

• Traditional: (CIA)
– Confidentiality – e.g. authorized principals may read.
– Integrity – e.g. authorized principals may write.
– Availability – e.g. authorized principals can access the system.

• Others:
– Authenticity, anonymity, non-repudiation, forward secrecy

• Some properties have no name:
– Define security properties in terms of programs or games.
– Is the system doing what it was meant to do: nothing more, nothing less.

“Is this systems secure?” – meaningless question outside the right context

Well resourced strategic adversary

• Key concept: “Threat Model”
• Adversary resources and capabilities:

– Every power that the adversary has.
– E.g. parts of the system observed, parts of the system that can

be influenced, parties they can corrupt.

• Strategic:
– The adversary will chose to commit resources optimally to

violate the security properties.
– “Ask what not how!”

Example I: The State level adversary

• What is the security policy?
– Who are the principals?
– What are their assets?
– What are the security properties they try to maintain?

• What is the threat model?

Example II: The Teenage Adversary

• What is the security policy?
– Principals, Assets, Security Properties

• What is the threat model?

Discussion

• Consider the security policies and threat models of the two
previous examples.
– “The State Level Adversary”, where a national telecommunication

carrier tries to prevent a national security agency from
eavesdropping on customer calls.

– “The Teenage Adversary”, where the education authorities are
trying to prevent teenagers accessing Facebook from a device
given to them.

• Which of the two security systems is most likely to preserve
its security policy? (And why?)

Note I:
Asymmetry between attack and defence

• Attacker: needs to find one way to violate a
security property.
– Given the resources in the threat model.
– Any one: lowest hanging fruit.

• Defender: needs to ensure that no adversary
strategy can violate the security policy.
– Much harder job!

Note II:
Are Adversary motives important?

• Possibly many motives: fame, money, commercial
advantage, military advantage, political …

(+ Other unknown motives)
• Verus: One bottom line motive:

Violate the security policy.
• Security mechanisms: Motives above distilled into

adversary resources in the threat model.

Note III:
Where do security policies come from?

• Factors in formulating security policy:
– Security Engineering,
– Business,

– Risk Management,

– Legal and Compliance.

• Must be revised as the above change.

So, when is a system “secure”?

• A system is “secure” if an adversary within a
specific threat model cannot violate the security
policy.

• Observe security systems around you!
• Key skill: Infer policies and threat models

– Learn to discern the “Security policy”

– Learn to discern the “Threat model”

Security Policy and Security Mechanisms

• Technical security mechanisms are used to ensure that the
security policy is not violated by an adversary within the
threat model.

• A rigorous argument is needed to show the security
mechanisms are indeed effective in maintaining the security
policy. (Key concept: the “security argument”)

• These mechanisms are the essence of the technical side of
computer security.

Policy or mechanism? (I)

Authenticity: only the
authorized user / owner of
the account is allowed to
see or modify data.

Confidentiality: The
password needs to remain
secret for the security policy
to hold.

What is the security policy:
Confidentiality or Authenticity?

Policy or mechanism? (II)

High level property: authenticity.

Mechanisms rely on “things that the
adversary should not be able to do”:
● These are like “security properties”, but

are also internal to the security
mechanism.

● How to distinguish: “Is there another way
of achieving authenticity?” Yes!
(Token, Biometric, Social)

Problems with internal security properties:
● Repercussions not well understood by

system users.
● User security decisions at the level of

“internal security properties” will be
misunderstood by users. Not within their
realm. Violate the interface a user
expects.

The Security Engineering Pyramid (I)

• Security
Policy:
– Principals
– Assets
– Security

Properties

• Threat Model
– Capabilities of

adversary

Security Policy (Threat model)

Security Mechanisms Design

Security Mechanism Implementation

The Security Engineering Pyramid (II)

• Protection
mechanisms:
– Architecture
– Special

hardware
– Software

design
– Cryptography

design

Security Policy (Threat model)

Security Mechanisms Design

Security Mechanism Implementation

The Security Engineering Pyramid (III)

• Mechanism
Implementation

– Hardware
Side channels

– Coding bugs

• Operations
– Corrupt

insiders

Security Policy (Threat model)

Security Mechanisms Design

Security Mechanism Implementation

Eight Principles for security mechanisms
(and Two more)

• Key reading:
J. Saltzer and M. Schroeder. The Protection of Information in
Computer Systems. Fourth ACM Symposium on Operating Systems
Principles (October 1973)

• A tutorial that draws together existing know-how ('75)
• Note the “Glossary”
• Principles are not hard rules, but deviations should

be justified.

Economy of mechanism

• “Keep the [security mechanism / implementation] design
as simple and small as possible” [SS75]
– Why? Easier to audit and verify.
– Operational testing is not appropriate for security.

(But penetration testing may be valuable)

• Related key concept: “Trusted Computing Base” (TCB)
– Every component in the system on which the security policy

replies upon.
– Needs to be kept small.

A bit more on the
“Trusted Computing Base” (TCB)

• The TCB contains all aspects of the system on which the security
policy relies.
– Hardware, firmware, software

• If any of those go wrong in the TCB, the security policy can be
violated.
– If something goes wrong outside the TCB, the security policy still holds.

• Counter intuitive connotations of “Trusted”
– Relying on many trusted parts is bad – Key concept: “The attack surface”
– Want to minimize the attack surface.
– Proper use of the verb “to trust” in Security Engineering:

“X trusts Y will do Z.”

Fail-safe defaults

• “Base access decisions on permission rather than
exclusion” [SS75]
– Whitelist, do not blacklist.
– Errors / uncertainty should err on the side of the security

policy.

• Examples:
– (Integrity) User input in forms.

– (Confidentiality) Cipher suit negotiation in SSL

Fundamental principle of sanitization

• Positively verify that “low” integrity objects are within a valid set
before elevating their integrity to “high” integrity.
– White list: check that all properties of good objects hold.

– Do not blacklist: just checking for bad objects or properties.

• Examples:
– Expect a telephone number? Check that it is of the form “\+[0-9]{1,20}”, not

simply that it does not contain letters.
– Expect text to display as a caption of a photo in a web album? Ensure that it

is from a restricted set of Unicode, or apply to it a transform to “escape” /
“encode” any characters not from that safe set into it. Do not simply check it
does not contain “<script>”. (XSS Attack)

Principle illustrated

Have this object Alice!
Universe of
good things

Bad things … (large, undefined set)

Is it in the Universe
of good things? Accept!

Is it in the set of bad things? Reject!

Do this ...

… not that!

Complete mediation

• “Every access to every object must be checked for authority” [SS75]
– All actions are subject to the security policy

• Key concept: “The reference monitor”
– The component (both design and implementation) that mediates all actions

and ensures they are according to the policy.

• Problems with complete mediation:
– Bottleneck?

– Distributed systems?

– Whose reference monitor?

Open Design

• “The design should not be secret” [SS75]
– Only very specific passwords / keys should be assumed are

secret. (Kerckhoffs’ principle from 1883)
– Ease of auditing: To many eyes all bugs are shallow.
– Difficult in practice to keep design secret (unrealistic threat

models assume designs stay secret).

• This is the key principle that allows, and requires, an
open academic discipline devoted to understanding
computer security.

“No Security by Obscurity”

Open Design and Open Systems

• Is “Open Design” just a fall back?
– Design may leak or be reverse-engineered.
– No problem if that happens – but still some benefit from

obscurity?
– Maybe: custom system with one stakeholder.

• Open Systems:
– Cars, Power Stations, Operating Systems, Network

Protocols, DVD players.
– Many stakeholders = multilateral properties.
– Who gets to evaluate the design?
– All security properties reduce to the interests of that entity.

Case Study:
GSM Security.
Great for billing security.
Not so great for privacy.

Separation of Privilege

• “Where feasible, a protection mechanism that
requires two keys to unlock it is more robust and
flexible than one that allows access to the presenter
of only a single key.” [SS75]

• Down side?
– Availability
– Complexity of orchestration.
– Dilution of responsibility.

Least Privilege

• “Every program and every user of the system
should operate using the least set of privileges
necessary to complete the job” [SS75]

• Examples:
– (Integrity) DB program, can only write the DB.

– (Privacy) Data minimization principle.

Least Common Mechanism

• “Minimize the amount of mechanism common to more than
one user and depended on by all users” [75]

• What does that mean? What about simplicity?
– “Every shared mechanism represents a potential information path

between users and must be designed with great care to be sure it
does not unintentionally compromise security”

– Interactions in design make validation of security design hard.
– Interactions in the implementation may e.g. lead to unintentional leaks

of information.
– Robustness of single points of failure.

Psychological Acceptability

• “It is essential that the human interface be designed for
ease of use, so that users routinely and automatically
apply the protection mechanisms correctly” [SS75]

• Mental model of the (honest) users must match
security policy and security mechanisms.

• Cultural acceptability:
– (Authentication) Photographs that must uncover faces.
– (Safety) Register of everyone who sleeps in a dorm.

Problematic: Work Factor

• “Compare the cost of circumventing the mechanism
with the resources of a potential attacker” [SS75]

• Upside: Refine threat model
• Downside: difficult to quantify.

– How do you know the cost of seducing an insider?
– What is the cost of finding a bug?
– Dangerous extension: model “monetary gain” of adversary

Problematic: Compromise Recording

• “Reliably record that a compromise of information has occurred [...] in place
of more elaborate mechanisms that completely prevent loss.” [SS75]

• Upsides:
– Instantiation: Keep logs

– Instantiation: Designs based on tamper evidence (seals).

– Can sometimes recover after compromise.

• Downsides:
– How do you know a compromise has occurred?
– What if you cannot recover?
– Integrity of logs? Logs may add to vulnerability (privacy)?
– Who analyses the logs? (Expensive)

Exercise: Compare two security mechanisms
on the basis of established computer security
principles.

• Back to our on-line banking example:
Mechanism to achieve “two-factor authentication”
– Mechanism one: web password & mobile phone app.
– Mechanism two: web password & special card reader

device.

• Discuss...

Cheat Sheet of principles [SS75]

Economy of mechanism

Fail-safe defaults

Complete mediation

Open Design

Separation of Privilege

Least Privilege

Psychological Acceptability

Work Factor

Compromise Recording

Other key concepts:
- Trusted Computing Base (TCB)
- Reference Monitor

Subsequent principles:
Weakest link, versus defence in depth

• Big security systems are build from smaller ones:
– “Composition” of secure systems
– It is not always secure to compose two secure systems.
– Two models for composition of secure systems:

Weakest link: if any sub-system is
broken the security policy is violated.

Defence in depth: if any sub-system remains
secure, the security policy is enforced.

Examples of composition

• Back to the example of authentication:
– 2-factor authentication with web password and device

(like phone): layered, defence in depth.
– Password recovery mechanisms, where a password

reset is sent to an email, or personal knowledge
questions are asked: weakest link.

• Secure composition of security systems is one of
the hardest aspects of security engineering.

Subsequent Principles:
Worse case versus Average case

• How to measure the degree of protection afforded by a
security system:
– In general: Important open question!

• On the basis of the worse case: Take the inputs from both
the honest users, and the adversary that produces the
worse outcomes (in terms of violating the security policy).

• On the basis of the average case: Given the actions of a
“typical” / “average” user, and the worse actions of an
adversary measure the outcome.

Pros and cons

• “Worse case” security measure:
– Makes no assumptions on the user behaviour within the security policy.
– Strong guarantee
– Pessimistic – low performance.
– Examples: Cryptographic primitives

• “Average case” security measures:
– What is a typical user?
– Difficult to second guess which actions are more important to protect

within the security policy.
– More fragile.
– Examples: data anonymization, network anonymization.

Engineering Secure Systems

Security Policy (Threat model)

Security Mechanisms Design

Security Mechanism Implementation

Business Model, Policies,
Values, Assets, Legal
context, Human context,
attitude to risk.

Technical Architecture,
choice of hardware, network
protocols, platforms,
engineering methodology,
evaluation and testing

Supply chain, programming
methods, operations, HR,
vetting, backups, ...

Security engineering may have profound
implications on the rest of the system design.

A Final Note on Principles

• Principles allow us to identify safe and unsafe
patterns in the security engineering process.
– Security Policies and Threat Models
– The Security Pyramid
– The 10 principles [SS75]
– And a few more.

• Do not use principles as a blind checklist.

“Ultimately, you must forget about technique. The further you progress,
the fewer teachings there are. The Great Path is really No Path.”
 – Morihei Ueshiba

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

